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Abstract The PDZ domain is an interaction motif that
recognizes and binds the C-terminal peptides of target
proteins. PDZ domains are ubiquitous in nature and help
assemble multiprotein complexes that control cellular
organization and signaling cascades. We present an opti-
mized energy function to predict the binding free energy
(ΔΔG) of PDZ domain/peptide interactions computation-
ally. Geometry-optimized models of PDZ domain/peptide
interfaces were built using ROSETTA, and protein and
peptide side chain and backbone degrees of freedom are
minimized simultaneously. Using leave-one-out cross-
validation, ROSETTA’s energy function is adjusted to
reproduce experimentally determined ΔΔG values with
a correlation coefficient of 0.66 and a standard deviation
of 0.79 kcal mol−1. The energy function places an
increased weight on hydrogen bonding interactions when
compared to a previously developed method to analyze
protein/protein interactions. Binding free enthalpies
(ΔΔH) and entropies (ΔS) are predicted with reduced
accuracies of R=0.60 and R=0.17, respectively. The
computational method improves prediction of PDZ

domain specificity from sequence and allows design of
novel PDZ domain/peptide interactions.

Keywords Prediction of binding energy . Peptide–protein
interface modeling . Protein binding specificity prediction .

Protein design

Introduction

Protein/peptide interactions play an important biological
role in an array of cellular processes. One motif frequently
used for such interactions is the well characterized PDZ
(PSD-95, Discs large, Zona occludens 1) domain [1].
Within Homo sapiens, Drosophila melanogaster, and
Caenorhabditis elegans, Schultz et al. [2] have estimated
the existence of 440 PDZ domains in 259 different proteins,
133 PDZ domains in 86 proteins, and 138 PDZ domains in
96 proteins, respectively. PDZ domains perform critical
roles in signaling cascades of bacteria, yeast, plants, and
animals [3] by acting as intracellular scaffolding proteins
[4, 5]. Pathogens disrupt host-signaling processes using
linear peptide motifs to target PDZ binding sites [6].
Developing inhibitors of these interactions is one avenue
of therapeutic development [7]. The wide-spread presence
of the PDZ domain in nature and its integral role in
numerous biological processes and diseases make it an
ideal focus for studying the specificity of protein/peptide
interactions.

PDZ domains bind peptides through strong backbone
hydrogen bonds

PDZ domains are typically composed of 80–90 amino acids
[8] and consist of a central bent six-stranded β-sheet
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surrounded by two α-helices. The peptide binding interface
(Fig. 1) lies at the edge of the β-sheet. The peptide binds in
an extended, antiparallel conformation, using the unsatis-
fied hydrogen bonding capabilities of PDZ β-strand 2 (β2)
to extend the β-sheet by one additional strand. The ligand
also engages in side-chain interactions with the second α-
helix (α2) of the PDZ domain, which lines the other side of
the binding groove. The binding pocket contains a
characteristic hydrophobic loop (β1:β2) that binds the
peptide carboxy-terminus through the formation of three
hydrogen bond interactions. Overall, the interface is
characterized by strong backbone–backbone hydrogen
bonding contacts within a hydrophobic environment [9].

PDZ domain specificity is governed by side-chain
interactions

Although the general binding mode of PDZ domains is the
same, different proteins interact with different targets. While
specificity in the PDZ family has been studied extensively, an
unambiguous classification of the PDZ domain remains a
challenge [6]. Generally, PDZ domains have been grouped
into three classes (I, II, and III) depending on the character-
istics of the β1:β2 loop [6] and position −2 (P−2) of the

ligand (see Fig. 1). Class I domains have a G-L/Y-G-F
β1:β2 loop that binds C-terminal peptide residues of
sequence X-S/T-X-V/I/L (P−3-P0) [9]. Additionally, the
peptide hydroxyl group at P−2 makes an important hydrogen
bonding contact with the histidine side chain of α21 [6].
Class II proteins have a similar β1:β2 loop sequence of X-L/
V-G-F/I/L that binds peptide sequences having a hydropho-
bic amino acid at position P−2 (X-ø-X-ø) [8]. Class III
domains are less widespread and have a G-L-G-F β1:β2
loop sequence that binds peptides having an acidic amino
acid at P−2 (X-D/E-X-ø) [10, 11].

PDZ class I, II, and III proteins and their peptides have
variable sequence similarities (between 5% and 90%) but
are structurally highly similar. Indeed, Stiffler et al. [12]
found only a weak correlation between sequence identity
and PDZ domain specificity. Instead, Stiffler developed a
modified position specific scoring matrix based on the
profiles of peptides which bind to a domain. Chen et al.
[13] later developed a method that incorporated structural
information on protein/peptide residue pairs within close
proximity of each other. The model was capable of
predicting PDZ domain specificity for multiple species
from primary sequences and it was argued that including
structural information via the protein/peptide residue

Fig. 1a,b Binding site of PSD-95 a class I domain. PDZ (PSD-95,
Discs large, Zona occludens 1) domains bind peptides strongly
through backbone–backbone hydrogen bonds; dashed lines in (a)
indicate these interactions while dotted lines indicate protein–peptide
side chain–side chain hydrogen bonds, and the arrow points from the
hydrogen-donating nitrogen to the oxygen acceptor. Color in (b)
illustrates each residue’s overall energetic involvement in binding the
peptide, summing the weighted ROSETTA energy function of the
individual attractive, solvation, repulsive, rotamer, pairwise, and
hydrogen bonding energy contributions (ΔΔG values). In (b), the
strong backbone–backbone hydrogen bonds (shown as blue dashed
lines) between the PDZ3 protein and peptide residues V425 and T423
highlight the known PDZ3 protein preference for X-Thr/Ser-X-Val-
COO(−) peptides [4]. This is further emphasized by E424 and K421’s
lack of strong backbone-backbone hydrogen bonds and orange and
dark yellow residue colors, which have overall 0.1 and −0.3 ΔΔG

values, respectively. This is in contrast to T423 and V425’s teal and
dark blue color and respective −3.0 and −3.1 ΔΔG values. In addition
to hydrogen bonding interactions, important salt bridge (shown as
green dashed lines) and van der Waals interactions (protein side
chains contributing to van der Waals interactions shown with spheres)
are involved in binding the peptide tightly between a beta sheet and
alpha helix. H72 of the alpha helix seems to be the most involved in
binding the peptide, forming a salt bridge with E422, interacting with
T423 through side chain–side chain hydrogen bonding, and engaging
in van der Waals interactions with K421. L79 and K80 similarly
interact with V425 through van der Waals interactions, experiencing
the attractive part of the Lennard-Jones potential energy curve. This
probably creates a favorable, hydrophobic environment for the non-
polar, valine side chain and amplifies the strength of the hydrogen
bonds formed between the peptide carboxy terminus and P25, G24,
and L23
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position specific interaction matrix was sufficient to predict
the specificity of PDZ domains.

PDZ domains display a diverse and finely tuned specificity
profile

PDZ domain classification can be extended beyond the
three naïve classes discussed here. Specificity within these
classes depends upon other differences in the protein/
peptide interface that result in a diversified sequence
profile. Tonikian et al. [6] performed profiling of 91 point
mutants of a model PDZ domain to create a specificity map.
Using this map, 82 protein domains of the PDZ family were
reclassified into 16 classes distinguished by specificity for
peptide residues up to the P−6 position. While sequence-
based analysis alone reveals diverse specificity profiles,
the inclusion of structure-based information should
provide a more general model for predicting PDZ
specificity. Such a physical model would be a useful tool
for PDZ domain classification, specificity prediction, and
design.

The ROSETTA protein modeling software predicts specificity
of protein/protein interfaces

In a series of experiments, Kortemme et al. [14]
demonstrated the power of the knowledge-based energy
function of the modeling software ROSETTA to character-
ize and design protein/protein interfaces. A model for
protein/protein binding was created using a data set of
alanine mutants at protein/protein interfaces. The model
was able to predict successfully the results of alanine
scanning experiments on globular proteins (743 muta-
tions) and 19 protein/protein interfaces (233 mutations)
with low standard deviations of 0.8 kcal mol−1 and
1.1 kcal mol−1, respectively [14]. The model was applied
to create new DNase-inhibitor protein pairs with altered
specificities that functioned both in vitro and in vivo [15].
It was also used to fuse domains of two homing
endonucleases, creating a chimera that recognized a new
DNA target and functioned as a highly specific artificial
endonuclease [16].

While this model proved successful in modeling
protein/protein interfaces, the derived parameterization
is not optimal for protein/peptide interfaces as these are
characterized by distinct features that require a tailored
parameterization, such as smaller hydrophobic surface
area and a greater dependence of hydrogen bonding
interactions. Sood and Baker explored the use of
ROSETTA to design elongated p53 and dystroglycan-based
peptides that bind with increased affinity to Mdm2
oncoprotein and dystrophin, respectively. These studies
included backbone flexibility and allowed side-chain

flexibility through repacking of a rotamer library but used
the standard ROSETTA energy function with a packing
score derived from the change in solvent accessible
surface area [17]. Sood and Baker found that sampling
of the backbone conformation improved recovery of
sequence diversity in designed peptides and in cases
where the algorithm fails, insufficient sampling of back-
bone degrees of freedom explains the error.

A ROSETTA parameterization tailored for PDZ domain/
peptide interfaces

It is the objective of the present work to develop a model
for predicting the specificity of PDZ domains using the
protein structure prediction program ROSETTA. Saro et al.
[18] conducted isothermal titration calorimetry (ITC)
measurements on a series of peptides binding the third
PDZ domain (PDZ3) of postsynaptic density 95 protein
(PSD-95), a class I domain. They recorded the thermody-
namic properties ΔΔG, ΔΔH, and TΔS for a series of
six-residue peptides of sequence (X-X-X-T-X-V), with
different X amino acids influencing binding. We param-
eterize ROSETTA to accurately predict these thermodynamic
parameters.

Methods

Dataset for energy function parameterization

The dataset contains free energy (ΔΔG), enthalpy (ΔΔH),
and entropy (TΔS) measurements for binding of 28
peptides to the PDZ3 domain of PSD-95 (Table 1) [18].
The crystal structure of the PDZ3 domain of PSD-95 with
the highest resolution (1.54 Å) from the PDB was used for
structural modeling (PDBID 1TP5).

The crystal structure was determined in complex with
the peptide KKETWV.

Introduction of mutations and initial minimization
of structural models

ROSETTADESIGN [19] protocols allow in silico mutation of
amino acids. Briefly, the side chain of the amino acid in
question is removed and replaced with the side chain of the
target amino acid. The conformation of the introduced
amino acid is chosen from a backbone-dependent rotamer
library [20] to minimize the ROSETTA energy function. First,
the tryptophan at position P−1 of 1TP5 was reverted to a
glutamate to match the base peptide KKETEV used in the
study by Saro et al. [18]. Following this modification, the
28 PDZ domain/peptide complexes were built (Table 1,
Fig. 2b). All models underwent gradient minimization
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using ROSETTA to remove initial clashes (Fig. 2c) [21]. The
protocol involves eight rounds of gradient-based minimi-
zation of all torsional degrees of freedom, which is
alternated with side chain repacking using a rotamer library.
The all-atom RMSD of the structure changed by 0.40 Å on
average with a maximum of 0.51 Å observed for complex 6
containing the KKETEF mutant peptide.

ROSETTADOCK generation of structural models for protein/
peptide complexes

To generate minimized models for energy evaluation, all
bound structures underwent a small perturbation protocol
applied to the transformational degrees of freedom in the
protein/peptide complex using ROSETTADOCK (Fig. 2e)

[22]. This rigid body motion is complemented by a
simultaneous optimization of side chain coordinates
through a fast repacking protocol. The backbone coordi-
nates of protein and peptide are held fixed in the process.

The protocol is setup in an iterative fashion. First a
random small perturbation of up to 0.1 Å translation and up
to 2° rotation is made to the rigid body degrees of freedom.
Then the side chain conformations are allowed to change

Fig. 2 Procedural flowchart. Protein and peptide mutants of the PSD-
95 PDZ3 domain, 1TP5, were each downloaded (a) and minimized (c)
in ROSETTA to remove initial clashes. Experimental mutants were
reproduced in the computational analysis using design (b). Mutant
proteins and peptides were combined with minimized peptides and
proteins, respectively (d). These bound mutants were docked (e),
yielding 100 decoys, of which the 5 structures with the lowest energy
were selected and averaged over selected energy components (g),
including attractive, solvation, repulsive, Dunbrack, residue pair
electrostatics, hydrogen bonding, amino acid reference energies. The
protein structure with the peptide far removed was repacked over
selected residues determined from docking the structure (f). Because
the 100 unbound structures had the same total ROSETTA energy, a
single structure’s energy values were used rather than the average of
five structures (h). The unbound energy values for each structure were
subtracted from the corresponding, averaged bound energy values of
the structure (i), producing ΔΔE values for each energy term, which
were weighted and summed to produce the overall change in energy
due to the protein binding the peptide, which was correlated to the
experimentally determined binding energy, yielding the best correla-
tion with particular weights (j). For the specificity analysis, 17 PDB
files were downloaded (a) and separated into their fundamental
protein, peptide components. All possible protein–peptide complexes
were combined and minimized (c). Steps (d) through (i) as previously
discussed were followed. Energy terms from (i) were weighted using
weights determined from the mutational investigations (j)

Table 1 Thermodynamic parameters determined experimentally by
Saro et al. [18]. Binding energy changes to point mutations on the
native peptide, KKETEV were determined using isothermal titration
calorimetry (ITC) and represent the average of at least two
independent experiments

Peptide Kd (μM) ΔG
(kcal/mol)

ΔH
(kcal/mol)

TΔS
(kcal/mol)

1. KKETEV 1.9±0.1 −7.8±0.1 −6.2±0.1 1.6±0.1

2. KKETEA 91.0±2.0 −5.5±0.1 −4.6±0.2 0.9±0.2

3. KKETEL 7.9±1.3 −7.0±0.1 −4.1±0.3 2.9±0.2

4. KKETEI 7.7±1.2 −7.0±0.1 −4.3±0.2 2.7±0.1

5. KKETEM 21.0±2.0 −6.4±0.1 −6.8±0.2 −0.4±0.1
6. KKETEF 57.0±2.0 −5.8±0.1 −4.4±0.4 1.4±0.4

7. KKETET 105.0±6.0 −5.4±0.1 −5.9±0.2 −0.5±0.2
8. KKESEV 6.6±0.9 −7.1±0.1 −4.8±0.1 2.3±0.2

9. KKECEV 72.0±7.0 −5.7±0.1 −1.7±0.1 4.0±0.2

10. KKESEL 33.0±2.0 −6.1±0.1 −4.0±0.1 2.1±0.1

11. KKESEI 24.0±6.0 −6.3±0.2 −5.0±0.2 1.3±0.4

12. KKESEF 98.0±16.0 −5.5±0.1 −3.1±0.1 2.4±0.1

13. KKETGV 2.4±0.0 −7.7±0.1 −5.7±0.2 2.0±0.2

14. KKETAV 0.5±0.1 −8.7±0.1 −5.3±0.4 3.4±0.4

15. KKETVV 1.3±0.2 −8.1±0.1 −5.9±0.1 2.2±0.1

16. KKETLV 1.8±0.3 −7.8±0.1 −3.7±0.4 4.1±0.3

17. KKETPV 0.9±0.2 −8.2±0.1 −4.3±0.1 3.9±0.2

18. KKETWV 2.8±0.4 −7.6±0.1 −3.5±0.2 4.1±0.1

19. KKETDV 20.0±2.0 −6.4±0.1 −4.1±0.3 2.3±0.3

20. KKETKV 1.2±0.0 −8.1±0.1 −5.6±0.6 2.5±0.6

21. KKGTEV 80.0±3.0 −5.6±0.1 −2.7±0.1 2.9±0.1

22. KKATEV 21.0±4.0 −6.4±0.1 −2.4±0.1 4.0±0.2

23. KKQTEV 4.0±0.0 −7.4±0.1 −4.9±0.3 2.5±0.3

24. KKDTEV 85.0±12.0 −5.6±0.1 −3.9±0.3 1.7±0.2

25. KKKTEV 27.0±4.0 −6.2±0.1 −2.7±0.3 3.5±0.4

26. KKGTGV 273.0±30.0 −4.9±0.1 −2.6±0.3 2.3±0.2

27. KKATAV 8.3±1.5 −6.9±0.1 −3.0±0.1 3.9±0.2

28. YKETEV 1.2±0.1 −8.1±0.1 −6.9±0.1 1.2±0.2
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by substituting discrete rotamers from a library of con-
formations commonly seen in the PDB. If the substitution
results in a lower total energy, ROSETTA keeps the new
conformation of the protein. If the energy is higher,
ROSETTA may still accept the substitution with a probability
inversely proportional to the energy increase (Metropolis
criterion). On average, around 50 of these iterations are
completed in order to find the best combination of amino
acid side chain conformations. The output model is the
lowest energy complex observed throughout the entire
trajectory. Lastly, a gradient-based minimization on the
rigid body degrees of freedom moves the final model into
the nearest local minimum in the ROSETTA energy land-
scape. A total of 100 bound models were generated for each
complex. The 5 models with the lowest overall energy were
selected for further analysis (Fig. 2g).

Modeling apo structures in ROSETTA

The unbound (apo) structures were created by removing the
peptide from the binding pocket and away from the protein
by a distance sufficiently large to prevent any interaction
(> 100 Å). The side chains, which were allowed to move
during the docking protocol, were allowed to rearrange
using repacking algorithms [19]. A total of 100 models was
generated for each of the mutants, and the total ROSETTA

energy was used to select a single most favorable unbound
conformation for each of the 28 complexes (Fig. 2h).

Calculation and evaluation of binding free energy

The ROSETTA energy function contains six energy terms.
Van der Waals energies are modeled using a Lennard-Jones
12-6 potential. The potential is split into an attractive (atr)
and a repulsive (rep) component. ROSETTA introduces a
solvation energy (sol) that imposes a penalty for polar
atoms buried in the core of a protein accounting for the
exposure preferences of polar and non-polar atoms [23].
Side chain conformational probabilities are reflected by an
energy (dun) derived from rotamer probabilities [20].
Electrostatic interactions are mimicked by a knowledge-
based pair-wise potential (pair) derived from statistics over
the PDB. Hydrogen bonds (hbnd) are captured by an
orientation dependent potential [24]. Note that, in the past,
hydrogen bonds have been classified into three classes:
long-range backbone–backbone (lr-bb), backbone–side
chain (bb-sc), and side chain–side chain (sc-sc) hydrogen
bonds [14].

Within each structure, all residues were individually
evaluated. To obtain the total energy of the model, the sum
over all amino acids was computed and averaged over the
top five bound structures (Fig. 2g). For the unbound models
energies from the single structure with lowest ROSETTA

energy were used directly (Fig. 2h). The binding free
energy was computed for each of the above-mentioned
terms $$Eterm

binding using:

$$Eterm
binding ¼

1

5

X5

i¼1
$E

i

term
bound �$Eterm

unbound ð1Þ

$E
i

term
bound is the ROSETTA energy one of the five complex

models, respectively; ΔEterm
unbound is the ROSETTA energy of

the single unbound model.

Multiple linear regression is used to parameterize an overall
free energy function

To obtain an energy function optimized for the analysis of
protein/peptide interactions (Fig. 2i), a multiple linear
regression (MLR) analysis was used. Each of the $Eterm

binding

terms is affiliated with a weight wterm:

$$Ebinding ¼ watr$$Eatr
binding þ wrep$$Erep

binding þ wsol$$Esol
binding

þwpair$$Epair
bindingþ wdun$$Edun

bindingþ whbnd$$Ehbnd
bindingþ bias

ð2Þ
The bias is introduced to account for contributions to the

binding free energy not represented in the ROSETTA energy
function, such as the loss in entropy. The bias assumes that
these contributions are constant, an obvious limitation of
the present model.

The weights were determined by performing a leave-
one-out (LOO) cross validation analysis. In a round-robin
setup, 27 of the 28 mutants with known experimental
binding affinities were used to determine an optimal weight
set given these 27 data points. Afterwards, the binding free
energy of the 28th mutant was predicted and compared with
the experiment to enter a correlation analysis. This
experiment was repeated for all 28 mutants.

To determine whether an energy term contributes
significantly to an optimal energy function for protein/
peptide interfaces, energy terms were removed systemati-
cally. The subset of energy terms that resulted in the
optimal correlation coefficient within the cross-validation
experiment was used. The final weight set reported consists
of the average weights and standard deviations over of all
28 experiments. The protocol was implemented using the
MATHEMATICA software package (Fig. 2j).

Results

The physical model for protein/peptide interactions depends
on van der Waals, solvation, and hydrogen bonding

The optimal weight set was determined by a LOO cross
validation analysis as described in the Methods section. Of
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the six ROSETTA energy terms considered, only van der
Waals attraction (atr), solvation (sol), and hydrogen
bonding energies (hbnd), contributed to an energy function
that optimally reproduced experimentally determined binding
free energies:

$$Ebinding ¼ 0:47� $$Eatr
binding þ 0:40� $$Esol

binding

þ 1:34� $$Ehbnd
binding þ 3:90 ð3Þ

The correlation coefficient for the independent dataset is
0.66 (Fig. 3).

Known characteristics of the PDZ binding domain
are mirrored within the model

Figure 1 displays the per amino acid changes in free energy
upon peptide binding for the PSD-95 PDZ3 in complex with
the peptide KKETEV as determined by our model. Strong
backbone–backbone hydrogen bonds between the class I
domain and the peptide residues V(P0) and T(P−2) agree with
the anti-parallel β-strand binding motif of the PDZ domain
that forms two backbone hydrogen bonds for every other

amino acid. In this particular case, the C-terminal amino acid
V(P0) engages in three hydrogen bonds. This alternative
pattern is further highlighted by E(P−1) and E(P−3), which
contribute only 0.1 and −0.3 kcal mol−1 to the binding free
energy, respectively. In contrast, V(P0) and T(P−2) contribute
−3.1 and −3.0 kcal mol−1, respectively.

In addition to hydrogen bonding interactions, important
salt bridges and van der Waals interactions are involved in
binding the peptide tightly. H(α21) is the most important
residue within α2 for binding the peptide as it forms a
hydrogen bond with T(P−2) through side chain hydrogen
bonding, and engages in van der Waals interactions with K
(P−4). L(α28) and K(α29) interact with V(P−0) through van
der Waals attractive interactions. This creates a favorable,
hydrophobic environment for the non-polar valine side
chain and amplifies the strength of the hydrogen bonds
formed between the peptide carboxyl terminus and F(β21),
G(β1:β28), and L(β1:β27).

Enthalpic and entropic contributions to the binding free
energy map to different components of the ROSETTA energy
function

The investigation was extended to other thermodynamic
characteristics of protein/peptide binding including enthalpy
and entropy (Table 2). The independent correlation observed
for the binding enthalpy ΔΔHbinding is with 0.60 only
slightly reduced from the value observed for the Gibbs
binding free energy (0.66, Fig. 3). In contrast, when
correlating with respect to experimentally measured entropy
changes the independent correlation drops to 0.17.

Specificity prediction for 12 PDZ domains with available
crystal structures

For the specificity analysis, a set of 12 PDZ protein/peptide
complexes with available crystal structures was used
(Table 3). All experimentally determined structures with
resolutions of 2.30Å or better were considered (PDBID
1BE9 [10], 1N7F [25], 1OBY [26, 27], 1RZX [28], 1TP3,
1TP5, 1V1T [29], 1W9E [29], 1W9O [29], 1W9Q [30, 31],

Fig. 3 Correlation of experimentally and computationally measured
ΔΔG values over peptide mutants of the PDZ3 domain. Experimen-
tally calculated binding energies were determined using isothermal
titration calorimetry (ITC) [18]. Computational binding energies were
determined after a leave-one-out (LOO) cross validation analysis of
the summed calculation of the various combinations of the weighted
changes in the attractive (atr), solvation (sol), repulsive (rep), residue
pair electrostatics (pair), dunbrack (dun), and hydrogen bonding (hb
and hb_bb) energy terms over all the residues due to the protein
binding the peptide. The individual binding term energy changes were
calculated using Eq. 1. Different combinations of these terms were
weighted and totaled according to Eq. 3. By calculating these weights
when each mutant was left out and then applying the determined
function, the LOO cross validation analysis measures the weighted
energy function’s predicting power. The predicted binding energies
(y-axis) for the various peptide mutants correlated nicely with the
experimentally observed binding energies (x-axis), having an r value
equal to 0.66. The overall computational function f xð Þ ¼ 0:47»Eatr þ
0:40»Esol þ 1:34Ehbnd þ 3:90 indicates the importance of the attractive,
solvation, and side chain hydrogen bonding energy terms

Table 2 Weighted energy terms over thermodynamic binding
properties

correlation atr rep sol hbnd rotamer pair

ΔΔG0.66 0.47±
0.04

0.00±
0.00

0.40±
0.06

1.34±
0.07

– –

ΔΔH0.60 – – – 2.25±
0.12

– 1.28±
0.16

ΔΔS 0.17 – – – 0.74±
0.10

0.36±
0.03

–
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2I04 [32], 2QT5 [33]). Structures used in the specificity
analysis were initially separated into their protein and
peptide components. Peptides were truncated to include
five carboxy-terminal residues. All possible combinations
between PDZ domains and peptides were created yielding a
total of 144 complexes. Each complex was refined using
the protocol described above (Fig. 2).

The binding energies for each complex were then
computed using the PDZ optimized weight set. The heat
map in Fig. 4a shows that the PDZ optimized weight set
captures specificity within each PDZ class. The complexes
group into two blocks reflecting the two classes of PDZ
domains. Figure 4b shows the receiver operating character-
istics (ROC) curve where a complex is regarded as a true
complex if both peptide and protein come from the same
PDZ class. The area under the curve is 78%, 28% better
than a random predictor.

Discussion

Energy function weights from LOO analysis are stable

The deviations from a perfect correlation are attributed to
imperfection in the ROSETTA energy function, which is
simplified to only contain pair-wise decomposable energetic
terms [34]. The small standard deviations observed for the
individual weights (Table 4) demonstrate internal consis-
tency as the analysis of all 28 complexes yielded very
similar weight sets.

Table 4 compares the weight set obtained in the present
analysis with a weight set optimized for protein/protein
interfaces [35] and the default weight set. Specializing the
energy function should allow prediction of binding affini-
ties at a higher accuracy than seen for a more generalized
function such as that put forth by Kortemme [14]. The
weights derived here deviate from the default ROSETTA

weights, highlighting the importance of a customized
computational model for protein/peptide binding. The
weight set is optimized to predict the binding free energies
PDZ domains. In particular, the hydrogen bonding weight
is increased substantially relative to other weights. This
result can be explained in part by the backbone hydrogen
bonds between peptide and PDZ domain. These hydrogen
bonds contribute significantly to the stability of the PDZ-
domain/peptide interface. However, as these hydrogen
bonds are present in all PDZ domain/peptide complexes,
they do not govern specificity but contribute an approxi-
mately equal amount to all interfaces studied.

Our results indicate that a high weight on side chain
hydrogen bonds is particularly important for accurate
specificity prediction. Interestingly, a holistic weighting
with a single hydrogen bonding weight gave the best
results. This is in contrast to the earlier reported optimal
weight set for protein/protein interfaces where hydrogen
bonds contributed differently depending on the level of
solvent exposure [35]. Beyond this aspect, changes in the
weight set are small.

Energy function components capture enthalpic
but not entropic contributions

The weighted energy terms vary significantly when
correlated to the different thermodynamic binding proper-
ties. Enthalpy is best predicted from hydrogen bonding
(hbnd) and electrostatic (pair) interactions; entropy corre-
lates best with a combination of hydrogen bonding (hbnd)
and rotamer probability. Overall we expected that ROSETTA-
derived energy terms correlate best with binding free
energies. Their knowledge-based character can be well
aligned with the definition of free energy in statistical
thermodynamics. Hence, every one of the ROSETTA energy
terms contains both entropic contributions and enthalpic
contributions. However, the term can be dominated by one

PDB ID PDZ class Peptide sequencea Resolution (Å) Domain

1TP5 1 KKETWV 1.54 PSD95-3

1BE9 1 KQTSV 1.82 PSD95-3

1TP3 1 KKETPV 1.99 PSD95-3

1RZX 1 VKESLV 2.10 Par-6B

2I04 1 RRRETQV 2.15 MAGI1-1

2QT5 1 NNLQDGTEV 2.30 GRIP1-12

1N7F 2 ATVRTYSC 1.80 GRIP1-6

1W9E 2 TNEFYF 1.56 Syntenin-2

1W9Q 2 TNEFAF 1.70 Syntenin-2

1V1T 2 TNEYKV 1.80 Syntenin-2

1W9O 2 TNEYYV 2.25 Syntenin-2

1OBY 2 TNEFYA 1.85 Syntenin-2

Table 3 Specificity data set

a Bold letters indicate amino acids
that were used for specificity
prediction (P0-P−4)
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of the two if it is better represented by the simplified two-
body equations used within ROSETTA. Our results demon-
strate that entropic contributions are least accurately
reflected and prevent ROSETTA from predicting to higher
degrees of accuracy.

Computed binding energies correctly classify PDZ domains

The correlation of the binding energies within each class is
apparent, but the computed binding energies across all PDZ
complexes do not accurately rank the complexes. However

Fig. 4 Specificity based on computed binding energy. Each column
shows the computed binding energies of the peptide from a structure
to each of the PDZ domains. Each row displays the computed binding
energies of each peptide to a given PDZ structure. a Heat map with
colors scaled according to the raw computed binding energy. b

Receiver operating characteristics (ROC) curve for PDZ classification.
c Heat map of the binding energies colored by the z-score computed to
the peptide group (i.e., within column). d Coloring scaled according to
the z-score computed by the PDZ structure group (within row)

Table 4 Weight set optimized for protein/peptide interfaces compared to a weight set optimized for protein/protein interfaces [35] and to the
default weight set. sc Side chain, bb backbone, atr attractive component of van der Waals energy, rep repulsive component of van der Waals
energy, sol implicit solvation energy, hbnd hydrogen bonding, rotamer knowledge based energy for conformation for a side chain

atr rep sol hbnd Rotamer

Protein/peptide 0.47±0.04 0.00 0.40±0.06 1.34±0.07 0.00

Protein/protein 0.44 0.07 0.32 sc-bb 0.49 0.28

sc-sc exposed 0.16

sc-sc intermediate 0.44

sc-sc buried 0.94

ROSETTA default 0.42 0.10 0.37 0.24 0.06

Table 4 Weight set optimized for protein/peptide interfaces compared to
a weight set optimized for protein/protein interfaces [35] and to the default
weight set. sc Side chain, bb backbone, atr attractive component of van

der Waals energy, rep repulsive component of van der Waals energy, sol
implicit solvation energy, hbnd hydrogen bonding, rotamer knowledge
based energy for conformation for a side chain
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when holding either the protein or the peptide constant, the
binding energies display a better correlation with specific-
ity as seen in Fig. 4c, d. This may reflect the need to
sample a greater conformational space. In fact, Sood and
Baker [17] found a better recovery of peptides sequence
profiles upon introducing backbone flexibility into their
design protocol.

Summary

This study presents a physical model for PDZ domain/
peptide interactions. Parameterization of the ROSETTA

energy function was achieved by fitting a linear model to
experimentally determined binding free energies for 28
PDZ domain/peptide complexes. The energy function is
dominated by van der Waals attractive, solvation, and
hydrogen bonding interactions. It reproduces well-known
determinants of PDZ domain/peptide interactions such as
an alternating pattern of backbone hydrogen bonding to the
second strand of the PDZ domain (β2) and side chain
interactions with the second helix (α2). While the Gibbs
free energy correlates well with experimental values (R=
0.66), correlation of enthalpy (R=0.60) and particularly
entropy (R=0.17) is reduced. This reduction is attributed to
the knowledge-based nature of ROSETTA energy functions,
which aligns well with the definition of free energy in
statistical mechanics. The resulting weight set was able to
classify a given PDZ/peptide complex 28% better than a
random predictor.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.
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